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A b stra ct 

The functional-differential equation which describes the one-dimensional symmetric 
motion of two charged particles in the framework of classical electrodynamics is con- 
sidered. In the case of the charges of a like sign it is proved that the global solution exists 
and it is specified uniquely by the instantaneous initial data, if the classical energy at the 
initial moment is sufficiently small. In the case of the charges of opposite sign there are 
additional restrictions on the initial data. The estimates are given which allow one to 
obtain an approximate description of motion. 

1. Introduction 

We consider the functional-differential system (we put  the speed of  light 
c = 1) taking into account the retardat ion of  interactions 

J((t) k 1 - X(t  - z(t))  
( I  - )~-2(t))3/2 - 72(t) 1 + ~((t - T(t)) (1.1) 

~(t) = x ( t )  + x ( t  - ~(t))  (1.2) 

which describes the straight-fine mot ion  (along the X-axis) of  two charged 
particles of  equal mass m having the charges e l ,  e 2 (here k = exe2/m ), which 
is symmetric with respect to the origin. Thus, the coordinates of  the particles 
are X( t )  and - X ( t ) ,  respectively. The radiation damping force is not  considered 
(see, however, Section 6). The system (1.1), (1.2) can be obtained by means 
of  the usual expression for the Lorentz force using the Maxwell equations. 

The two-body problem of  classical electrodynamics has been studied else- 
where (Driver, 1963; Driver & Norris, 1967; Driver, 1969; Driver, 1970). These 
papers deal with the qualitative behavior of  two charged particles in the case 
of  a straight-line motion.  The numerical investigation of  this problem has been 
carried out  by  Kasher & Schwebel (1971) and by Hushitt et al. ( t973) .  In this 
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paper we study the question of uniqueness of solutions of the system (1.1), 
(1.2) (equal mass case) and present some estimates of the solutions. 

It should be noted that in the general case the solutions of the equations 
with deviating arguments [these include equation (1.1)] are not specified 
uniquely by the instantaneous data given at the initial moment t = t o (Elsgolts, 
1966). However, if one demands that X(t) must satisfy the equations of 
motion also for t ~ (_o% to ] (not only for t >~ to), one may expect that this 
prescription provides the uniqueness of solutions. This formulation of the 
problem in the case of the system (1.1), (1.2) was considered by Driver (1970) 
(for k > 0; see also Driver, 1969). His result may be reformulated as follows: 
If a certain quantity, which can be roughly estimated as k/X o V~ (X o, V o are 
the initial data at t = t o; X o > 0, V o < 0), is sufficiently small, then the solu- 
tion of (1.1), (1.2) exists and it is unique. This result cannot be applied in the 
domain of initial data where V o/> 0 or k/X o V2o is comparable with unity. We 
shall extend the validity of the uniqueness theorem to this domain. The unique- 
ness (and the existence) of solutions will be proved under the condition that 
k/X(t) is sufficiently small for all t ~< to. Note that if k/X(t) > 1, there is some 
doubt concerning the validity of the equations used. In the case Vo ~> 0 the 
condition stated above is guaranteed when the classical energy at the initial 
moment Vg + k/Xo is sufficiently small. The case of attractive interactions 
(k < 0) is also considered; however, our treatment does not embrace all pos- 
sible nonrelativistic motions. The estimates will also be obtained (Section 3) 
which allow one to give an approximate description of motion. 

2. The Case k > O: Existence of Solutions of  the Equation (1.2) 

We consider the solutions satisfying the inequalities 

X(t) > 0 (2.1) 

t-~(t) I < 1 (2.2) 

In order to study the existence of solutions of (1.2), considered along with 
equation (1.1), with respect to z(t), one must define the system (1.1), (1.2) 
when the solution of (1.2) does not exist. For physical reasons we write 

2 ( t )  -- f a ,  8 - x ( t )  - x ( t  - t - £ ( t  - 0 
[1 - X Z ( t ) ]  3/2 7" 

(2.3) 

(5 is the Dirac function) because just this equation is obtained directly from 
the Maxwell equations, and the system (1.1), (1.2) follows from (2.3) as a 
special case when the solution of (1.2) exists. When this solution is absent the 
right-hand side of (2.3) vanishes, the interaction does not reach the particles, 
and they move with uniform velocity. We shall first confine ourselves to con- 
tinuous solutions assuming no differentiability, because the singularity of the 
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right-hand side of  (2.3) may take place at the moment  when the solution of  
(1.2) disappears. In this case the condition (2.2) transforms to 

Var (X, t, &t) < 1, At 4 : 0  (2.4) 

where 

Vat (X, t, 2x0 
x ( t  + a 0  - x ( 0  

&t 

Suppose (for contradiction) that the solution of  (1.2) does not exist for t = to. 
Then for Vt '  < to the solution does not exist either. Indeed, if 3r' such that 

~' = x ( t ' )  + x ( t '  - r ' )  

then taking into account (2.4) we obtain for t '  < t o 

where 

f(ce) > 0 for ~ = t '  - r '  

f ( a )  < 0 for a = to 

£(~) = t o  - ~ - X ( a )  - X ( t o )  

Then 3c¢o: f (~o)  = 0 and r o = t o - s o is the solution of  (1.2) for t = t o, i.e., 
we have the contradiction. Thus for t E ( .-~,  to] the solution of  (1.2) does not 
exist and the right-hand side of (2.3) vanishes. From (2.3), (2.4) we have 

Var (X, t, At) = const < 1, At 4= 0, t ~< to (2.5) 

Using (2.5) it is easy to prove the existence of  the solution for t ~< t o, i.e., we 
again have the contradiction. 

We can now formulate the following lemma: i fX(t )  E C(_= t 1 satisfying 
(2.4) is the solution of  (2.3), then the solution of  (1.2) with resi~ect to r(t) 
exists for all t ~< t o. 

We do not  define here in what sense the continuous function X(t) may be 
the solution of  (2.3), because this is not  essential for further considerations and 
one may choose X(t) to be a differentiabte function. According to Driver 
(1970), if the solution of  (1.2) exists, then 3 e: 

[J~(0 1 < o K  t (2.6) 

In analogy to Driver (1963), we obtain, using (2.6), the uniqueness of r(t) and 

22((0 2X(t) 
<- r ( t )  <- - -  (2.7) 

l + e  1 - c  

laX(t )  I + l aX( t  - fix, t )) l  
l r(X, t) - r(X', 01 < (2.8) 

1 - c  
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, x ( t )  = x ( t )  - x ' ( o  

dr(t)  = f~(t) + 2((t - ~(t)) 

dt 1 + f ( ( t -  r(t))  
(2.9) 

3. The Estimates o f  Solutions (k > O) 

Let X(t) be a solution of (2.3). One can easily see that X (t) < 0 for 
t ~ _0% X(t) > 0 for t -+ 0% and there exists a single point t where X(t)  = 0 
(the turning point). 

a. Consider the motion on that part of  the trajectory where )((t) ~< 0. 
Multiplying (1.1) by X(t) and taking into account (2.9) we obtain 

Therefore 

where 

d 1 k 
÷ -  

at x/[1 - 2 2 ( 0 ]  r(t)  
~>0 

1 1 k 

~/(1 - a 2) ~<x/[l L 22(01 + 2X(t--~ (3.1) 

a =  lim )((t) 

This inequality gives the upper estimate for a by means of  X(t), )((t). Evidently, 
)((t) > - a .  Multiplying (1.1) by X(t) and using (2.7) we have 

1 k(1  - a )  2 1 

~/[1 - 2 2 ( 0 1  + 4X(t) ~<~/(i - a 2) (3.2) 

1 k(1 + a) 3 1 

~/[1 - 22 (01  + 4(1 - a)X(t)  >~ ~/(1 - a2) (3.3) 

For 0 /~  1 the relations (3.2), (3.3) give an approximate picture of the phase 
trajectory distribution. 

After the simple transformations we obtain from (3.2), (3.3) 

X2(t)  + K/X(t) <<. E (3.4) 

22(0  + ~ / x ( t )  -< ' -~e (3.5) 

where 

K = (k/2)(1 - 0/)2, 

K' = (k/2)(1 + a)4(1 - a2) 1/2, 

E = 2[(1 - 0 / 2 )  - 1 / 2  - 1] 

E '  = 2(1 - 0/2)3/2 [(1 - a2) -1/2 - 1] 
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Then from (3.4) it follows 
x(t) 

f 4 ( e - - / x )  <. to - t, 

X(to ) 
On performing the integration we have 

E-'{X(t)/[E-x~ ] - X( to)J[E-x- -~)o)  ] 

+~-~-ln X(t){x/[E- K/X(t)] +X/E} 

By analogy with (3.6) 

E1 {X(t)J[E'-~(t)]-X(t°)J[ E' ~ ) ]  

=' , X(t){X/[E'- ='IX(t)}  +X/E'} } 
= X(;oi   X/te' -  '/X(to i +X/e'>  >to- 

to />t 

t o ~ t (3.6) 

t ~< t o (3.7) 

For a ~ 1 the inequalities (3.6), (3.7) may be used to define implicitly an 
approximate solution of (1.1), (1.2) and give the error of the approximation. 
We shall derive another relation which may be useful when a is comparable 
with unity, but k/X(t) ~< 1 for t ~ to. Making use of the identies 

X(t - 7") = X(t) - rA~(t) + r 2 f ds f ds'X(t - rs') (3.8) 
0 0 

1 

2 ( t  - ~) = 2 ( 0  - ~ f d s X ( t  - rs)  (3.9) 
0 

and transforming (1.1)we obtain 

2 ( 0  _ k[1 - 22(01 
[ 1  - +~'2 (t)] 3/2 4X2(t) 

where 

+ J(X, t) 

: ( x ,  t ) -  - -  
k 1 - X ( t - r ( t ) )  k 1 - X ( t )  

rz(t) 1 + X ( t -  r(t)) r2(t) 1 + X(t) 

r a (t) = 2X(t)/[ 1 + )((t)] 

Multiplying by X(t) we have 

+ k 
3[1 _ 2z(t)]  3/2 = K(X, t) (3.10) 
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where 

K(X,  t) = 

1 

2 (t) { k 2 o f ds 2( t  - r(t)s) 

1 --~-5(t)  r(-t) [1 + J ( ( t -  r(t))] [1 +J[(t)l  

1 s 

t-X(t) [ k kTa (t)] f dsfd"X(t-S'Ta(t)) } 
: + 1 0 ..... 0 ........... 

1 + X(t) r(t) r2( t )J  1.- f dsX( t  - ra ( t ) -  s[r(t) - ra(t)]) 

o (3.11) 

We use here the relation 
1 s 

r~(t) f ds fd s '2 ( t  - s%(O) 
0 0 

r(t) - ra(t) = (3.12) 
1 

1 + f dsX(t - ra(t) - s[r(t) - ra(t)] ) 
0 

which is obtained by making use of  a transformation analogous to (3.8), (3.9) 
in the equation (1.2). 

From (1.1) for )[(t) ~< 0 it follows that 

2( t  - sra (t)) <<- k(1 + a)3/4(1 - cOX2(t), s ~ [0, 11 (3.13) 

J((t - Sra(t) ) >I k(1 - 004(1 - aZ)I/2 /4X2(t) (3.14) 

These esimates persist if we substitute ra(t ) for r(t). Using (3.13), (3.14) one 
one can estimate (3.11): 

kC1X(t)/Xa(t) <~ K(X, t) < kC2 X(t ) /X a (t) (3.15) 

where C 1 ,  C 2 are the constants depending upon a and bounded for ~ ~ 0. 
Taking advantage of  (3.1 O) we have 

1 k 1 k 

311 - 2 2 ( 0 ]  3/2 + 4X(t~ 311 - X2(to)]  3/2 4X(to) 
< x ~ ( l  cl 1 + I c2 0 2  

(3.16) 

This relation gives the estimate of the error of the approximate expression 
describing the distribution of the phase curves of the equation (2.3), which is 
obtained by putting the left.hand side of (3.16) equal to zero. The relative 
error of  the approximation is defined by the quantity sup k/X(t). Certainly, 
all the relations remain valid when k/X(t) is comparable with unity. However, 
the approximation defined by (3,16) is good only if sup k/X(t) ~ 1. It is not 
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necessary here that a < 1, but if all the trajectory is considered [all t E (_oo. ~)] ,  
then a ~ 1 owing to (3.1). 

b. Now consider X(t) on the right-hand side of  the turning point [X(t) >~ 1]. 
The calculations are quite similar to (a); one should only remember that 
X(t - z(t)) changes its sign, though X(t) ~> 0. 

Let X( t l )  = 0. Using (3.1) for t < tl  we have 

l/x/(1 - a 2) ~< 1 + k/2X(t l )  (3.17) 

Taking into account the sign of .~( t  - z(t)) we have for t ~> t 1 

1 k 1 + a  k(1 +o 0 
- -  < 1 + ( 3 . 1 8 )  

x/[1 - 2 2 ( 0 ]  ~ X(t) 1 - a X(tl)(1 - a) 

Comparing (3.17) to (3.18) one can see that the constant c of (2.6) can be 
defined as follows 

1 k l + a  
= 1 + - -  ( 3 . 1 9 )  

x/(1 - c 2) X( t l )  1 - a 

The following considerations are analogous to (a). In particular, the relations 
corresponding to (3.6), (3.7) differ from them only by the sign of inequalities 
and by the value of  the constants E, E ' ,  •, K '. 

Later we shall use the estimate 
1 

2(0 ~ ( k(1 - c) 
~/[1 - 2 2 ( 0 ]  + (1 - a2) 1/2 >~ ddS ~_2(s)(1 + c) (3.20) 

0 

which is valid for all t E (_0% oo) and is obtained by integration of  (1.1). 

4. Existence and Uniqueness of  the Problem with Point Initial Data (k > O) 

We shall consider first the uniqueness. Let X(t), X'( t )  be the solutions of  
(2.3) satisfying 

X(to) = X(to) = Xo, X(to) = i f ( t o )  = -~o (4.1) 

Following Driver (1969), we start from the "backwards" solutions (t ~< to). 
a. Consider first the case ~o  ~< 0. Using (3.1) one can give an upper estimate 

for a and c in terms o fXo ,  X o. Taking advantage of the relation 

1 ( i 1 I t ( t ) -  7'(0 [ ~ ~ _ ~  2 ds i~2(s) 1 + 7(0 f ds [~2( t  - sr(t))l 

to 0 

where ~X(t) -- 2 (t) - 2 ' ( 0  , we obtain, after some calculations 

to to to 

t t s 
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p(s) = min {r(s), r '(s)), [IfH~ = sup If(t)I, tE  [a,b] 

the constantsA l, A2 depending on c~. 
Using relations analogous to (3.7) we have 

min(X(t),X,(t))<~-~ 1 +XoE----7 ~ee+ln2 3 (4.2) 

Here e = 2,718 • • • On e = 1) 

Using (3.20), (4.2) we find, solving the inequality written above with respect 
to I16XII~o, that 

116211~ o ~<Zl15211to,~ 

where 

We see that if 

txA i(1 + c 0 a(1 + c02A 2A a 
z ,  = ( 1  - o 0 ~ / ( 1  - ~:)  exp 2(1 - ~ ) x / ( 1  - o ~ 2 )  

L < 1 (4.3) 

then the solution is unique: 6 2 ( 0  = 0. 
We shall estimate the constants A 1, A 2, A 3 in the nonrelativistic case when 

22 + k/2X o ~ 1. The results are 

~2 ~ E ~ E '  ~ 2~ + k/2Xo 

A l ~ 4 ,  Az ~-,4, A 3 ~ - l ( l + l / 2 e + l n 2 )  

Then L -~ 16e2+1/e and (4.3) is satisfied for 2g  + k/2X o sufficiently small. 
If 12 01 is comparable with unity, but k/X o <~ 1, the condition (4.3) is in- 

effective. In order to find a more convenient condition we write using (4.2) 

to k(1 + o 0 2A 3 
f as k~ -2 (s) <~ 4X0 

- - c o  

Making use of  this estimate instead of  (3.20) one obtains 

L=O o12o  I 

Here O(z) is the quantity of  the order o fz .  
b. Consider now X o 1> 0. It will be essential for our reasoning that Xo z + 

k/2X o be sufficiently small. For simplicity we shall confine ourselves to the 
requirement 202 + k/2X o ~ 1, which is always satisfied in the nonrelativistic 
case. In this case 12 (0  1 ~< c ~ 1, and,~(t),  2 ' ( t )  may differ only by the quan- 
tity of  the order O(c) max (1X(0 I, I X (t) I). To prove this one should use 
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(3.6), (3.7) and their analogs for )((t) i> 0. In this connection we shall write 
down the constants in the subsequent estimates approximately,  neglecting the 
higher-order terms in c. 

Let X(t a ) = 0, t 1 ~< t o. Denote X 1 = X(t  I). On account of  the invariance 
of (2.3) with respect to time translations, one can choose the parameter t for 
X'( t )  in such a way that X' ( t l )  = 0, the phase trajectories being preserved. In 
this case X'(t)wil l  satisfy the initial conditions (4.1) not at t = t o, but at some 
other instant t = t o. Denote X ' ( t l )  = X'  1 = X1 + 8X t • I f f X l  = 0, the first part  
of  this section yields X(t) - X'( t )  for t ~< t 1 , and X(t) - X'(t)  for t ~> t 1 follows 
in virtue of  the known theorem (Driver, 1963). We shall suppose 8X I ¢ 0 and 
show that this leads to contradiction. 

By analogy to the above calculations, estimating 6X(t) first for t < t I and 
then for t ~> t I, we obtain 

1162t1~-~o < 8eZ+t/eal 5X  1 I/X 1 (4.4) 
Using (3.10) one can write 

1 
3 [ 1 - J(2 (t)] 3/2 

When X(t)  varies to X'(t) we have 

to t '  o X( to)  

f risK(x,,)- f 
tl t, 2(t'0) 

Estimating C2 in (3. 
t 

k 1 k t 
+ 4X(t) 3 + 4X I + f ds K(X, s) (4.5) 

tl 

ds K(X', s) = f K(X, s) dX(s) t° • . + f ds 8K(X, s) (4.6) 
X(s) tl 

15) we obtain, after rather lengthy calculations, 

f ds <~ a2--~k 84e2+1/e 18X1 I 16K(X, S)[ (4.7) 
X1 X1 

to 
X(to)  

f K(X, s) ~2k16X11 
dX(s) X(s)  <~ 12e2+1/e X2 (4.8) 

x ( t'o) 
It should be remembered that we write down the constants approximately. 
Taking into account that J~(to) = Jf ' ( t0)  and (4.7), (4.8), we have from (4.5) 

k k = ( f f  _ ~ )  [1 _ 0(42)]  (4.9) 
X(to) x'(tO) 

When ~2 ~ j~) + k / 2 X  ° is sufficiently small, the relation (4.9) contradicts 
(4.1) for 6X 1 4= 0. This proves the uniqueness for -~o >~ 0. Here o~ may be con- 
sidered sufficiently small i f ~  < 10 -3 [in this case L < 1, O(a 2) < 1]. Thus, 
tile uniqueness of  the "backwards" solutions is proved for arbitrary sign of 
-'Yo- The uniqueness for the global solutions follows from this according to tile 
result of  Driver (1963). 

c. The existence of  solutions satisfying (4.1). Because the p roof  is very 
simple we give onty its outline. Following Driver ( t969)  one can prove the 
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existence of solutions with initial data XI, X1, for which k/X1X ~ ~ 1, ~r I ~ 0. 
Using (3.1)-(3.3) and their analogs at the right.hand side of the turning point, 
it is easy to prove that there exist initial data (for t = h)X'l, X'x, ~", 
such that the point (Xo, .~0!,of the, phase plane lies between the phase tra- 
jectories (X(t), X(t)) and (X (t), )( (t)). In the domain of the phase plane 
(X, Y), where k/XY 2 ~ 1, Y < 0, the continuous dependence of the "back- 
wards" solutions upon X1, X t can be easily proved and so we infer the con- 
tinuous dependence of the global solutions upon X1, -~1, making use of the 
result of Driver (1963). From this it follows that there exists the trajectory 
(Xo(0, Xo(t)) which passes through the point X o, -~o at some t = t 2. This 
proves the existence of solutions satisfying (4.1), because the invariance of 
(2.3) with respect to time translations allows us to change t 2 ~ t o. 

We shall sum up the results obtained. 

Theorem. The equation (2.3) admits the unique global solution X(t) 
[t C (_0% ~o)] corresponding to the data (4.1) in the set of functions 
of C(2_= ~) satisfying the conditions (2.1), (2.2), if (_~2 o + k/2Xo) is 
sufficiently small. 

5. Opposite Sign of the Charges (k < O) 

If the charges of the particles have an opposite sign, the situation differs 
from that considered in Section 4. It is easy to see that i fX  (to) ~> 0, then 
X(t) cannot be extended to all t ~< t o, because in this case 

3t1: lira X(t) =0 
t->t~ +o 

Taking into account that X(t) < 0 we have, in analogy with (3.2), (3.3), 

1 l k I [ 1 -  [X(t0) l ]  1 
>I"1,4( - a2~ a = - t-*lira- ~o .~(t) 

x/[1 22(01 
(5.1) 

This imposes a certain restriction on the possible initial data and the solutions 
for t ~< t o. The inequality 

1 [k l  1 
x/t1 - X z(t)l 4X(t) ~<~-{ - a : )  (5.2) 

obtained in an analogous manner gives the lower estimate for a. Further con- 
siderations are analogous to Sections 3, 4a, and 4c. The condition for the 
uniqueness is 

C I ~ / X - ~ o  ) exp C 2 t k [ - 

where the constants C1, C 2 are bounded for small a. Here, besides the condi- 
tion that t k/Xo t should be sufficiently small one must demand a > O(x/I k/Xo t). 
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6. Concluding Remarks 

From the results established so far we infer .that in a certain domain of  the 
phase plane the phase trajectories do not  cross each other. On account of  this 
one may state that there exists the Newtonian equation (of  the second order 
without deviating arguments) which is equivalent in a certain domain to the 
system (1.1), (1.2) [or (2.3)]. 

In the above treatment we neglected the radiation damping force. Had we 
taken the usual expression for this force (containing the third derivative) in 
the equations of  motion, this would have changed significantly our considera- 
tions and led to certain mathematical troubles. These troubles arise from the 
assumption that the particles have a pointlike structure. However, in our 
opinion it is more reasonable to admit an extended structure of  the particles. 
In this case one can obtain another expression for the radiation damping force 
which is analogous to that of  Zhdanov (1974). Detailed investigation shows 
that this expression has properties analogous to that of J(X, t) (see (3.10), 
(3.1 t )  multiplied by X(t)/R, where R is the radius of  the particles. To write 
down an explicit expression one must know the details of  the internal struc- 
ture of  the particles and the forces which provide stability for the particles. 
Our assertion concerns the case when these forces have a structure similar to 
that of  an electromagnetic interaction. If  k/R < 1, we can preserve the basic 
lines of  our proof  and the results of  Sections 4 and 5 remain valid. 
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